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ABSTRACT

Similarity measurement between musical pieces is a hard
problem. Recent research on contextual information assigned
(tags) in social networking services has shown to be highly ef-
fective in measuring musical similarity. Nevertheless, such
an approach requires adequate amount of tags assigned to
each musical datum. In the case of the so called “cold-start”
problem, this assumption is not valid for several music data.
Herein, we address this problem by proposing the utilisation
of a learning mechanism that maps musical data from audio
feature space to tag feature space. The developed mapping
can be applied to musical data with no or limited contextual
information, in order to more accurately evaluate similarity
and avoid the sole use of audio-based similarity measures that
may affect the similarity measurement quality. Experimental
results with real musical data illustrate the substantial gains of
the proposed method.

Index Terms— audio similarity measurement, social tags,
“cold-start” problem, metric learning

1. INTRODUCTION

Measuring the similarity between two musical pieces is widely
accepted to be a hard problem, as it is difficult to be defined
in strictly objective terms [1]. For this reason, musical simi-
larity is often based on subjective criteria, for which, however,
contextual knowledge becomes an important factor [2]. It is
possible to consider several sources of contextual information
that can be utilised for musical data. Since human assigned
social tags present several advantages in Music Information
Retrieval (MIR) [3], we henceforth focus our examination on
these.

Despite the inherent difficulties in assessing music sim-
ilarity, its output is of great importance to numerous areas of
MIR. Based on music-similarity measures, listeners are able to
perform query by example tasks, musicologists identify com-
mon patterns between writers or writer development based
on other writers, commercial music dissemination offer better
suggestions on potential buyers using recommender systems,
and music producers utilise special applications that produce
template playlists for their work.

Some methods compute music similarity using objective
metadata, e.g., composer name, song title, etc. However, such
methods are in cases not as helpful as content-based method-
ologies are, since metadata require prior knowledge of data
that is not conveyed by listening, may be potentially unavail-
able and have limited scope due to usage of pre-defined de-
scriptors. Content-based similarity has been under extensive
research [4, 5, 6, 7] focusing on features extracted from the
audio content, which express different attributes of a musical
datum. Nevertheless, it is becoming acceptable that the per-
formance of content-based music similarity is reaching a limit
that is characterised as “glass ceiling” [4].

The widespread penetration of “Web 2.0” and its increased
social interactivity allowed the “wisdom of the crowds” to be
available thought one of the most commonly attributed prac-
tice of users in social-networking websites, the assignment
of tags that offer rich contextual information. The informa-
tion conveyed by tags on musical data is of high importance
to MIR [2, 8, 9] as it is an almost unique source of human-
generated information that cannot be attained by audio-content
processing.

Bearing in mind the aforementioned subjectivity of musi-
cal similarity and the nature of user assigned tags on musical
data, it comes as no surprise that methods measuring musi-
cal similarity based on tags are frequently more accurate than
content-based methods [3]. However, measuring musical sim-
ilarity based on tags comes with the prerequisite that an ad-
equate number of tags exist for the songs whose similarity is
being measured. This assumption, however, is not always true,
e.g., newly released songs or songs of limited popularity com-
monly present diminished number of tags assigned to them.
This problem is also known as the “cold-start” problem that
becomes critical when tags are to be used for long-tail music
discovery [2].

1.1. Motivation

Although contextual information sources, such as social tags,
present several benefits for measuring music similarity, the
“cold-start” problem prevents their usage in several cases.
When lacking contextual information, the use of audio-based
similarity measures is a plausible alternative. Nevertheless,
“forcing” the invocation of audio-based similarity can happen



at the cost of diminished performance in terms of the accuracy
of the computed similarity.

What is, thus, required, is a novel approach that will in-
corporate the beneficial characteristics of the context domain
(social tags) into the content domain (audio features). A prin-
cipled learning approach can allow us to develop a mapping
mechanism from the feature space that is defined by audio con-
tent to the feature space that is defined by the contextual infor-
mation in the form of social tags. For this purpose, we aim to
exploit musical data for which adequate contextual informa-
tion (tags) are available for the purpose of learning an effective
mapping from the audio feature space to the tag feature space.
This mapping can then be applied for musical data that have
no or limited contextual information. Such an approach can,
thus, address the “cold-start” problem by providing more ac-
curate similarity measurement and avoiding the “forced” use
of audio-based similarity measures.

1.2. Contribution and Paper Organisation

In this paper we propose a novel method for improving the ac-
curacy of similarity measurement for musical data that have
not been assigned or present little contextual information
(“cold-start” problem). Our contributions are summarised as
follows:

Initially, we propose a novel method, called Audio-to-Tag
mapping (A2T), that takes advantage of existing contextual in-
formation in the form of social tags, and learns a mapping be-
tween the audio and tag feature spaces. Our approach formu-
lates the mapping problem as learning a matrix that minimises
the relative entropy between the two kernel matrices which
compute the similarity between the two aforementioned fea-
ture spaces. In addition, we describe the effective application
of A2T for the case of the “cold-start” problem, for which A2T
can use audio features to map songs to the tag feature space
and perform similarity measurement within it, thus avoiding
to rely solely on audio-based features. Finally, we perform ex-
perimental evaluation with real data crawled from music web
services (Last.fm and iTunes), indicating the clear benefits of-
fered by A2T compared to the plain use of audio-based simi-
larity measures for the case of “cold-start” problem.

It should be noted that the proposed methodology is not
similar to the automated tag creation for musical pieces, also
known as “auto-tagging”. Our proposed method does not pro-
duce a list of tags, on which similarity would then be mea-
sured, for a piece with no or limited tags based on similarity
of other spaces.

The rest of the paper is organised as follows. Section 2
reviews related work. Section 3 details on content and context
domains and provides a formal definition of the problem inves-
tigated in our work, whereas Section 4 presents the proposed
method for mapping from audio to context. Section 5 presents
and discusses the experimentation and results obtained, while
the paper is concluded in Section 6.

2. RELATED WORK

Research utilising metric learning has recently started to at-
tract attention in the MIR domain. Slaney et al. [1] describe
means to embed acoustic features of musical data into a met-
ric space. Aiming at the pairwise Euclidean distance between
two songs to reflect semantic dissimilarity, their approach al-
lows distance-based analysis, such as k-NN classification, to
detect similar songs within a collection. Differently from our
proposal, [1] assumes similarity based on the original content
space using the Mahalanobis distance while no use of context
knowledge, in the form of social tags, is applied therein. Met-
ric learning has also been utilised by McFee et al. [3] in or-
der to learn content-based similarity for collaborative filtering.
Their work focuses on optimising similarity for ranking, that
is, similarity is evaluated according to the ranked list of results
in response to a query example by use of the Metric Learn-
ing to Rank algorithm. In comparison to our work, in [3] the
main approach is applied to three different sources of infor-
mation without having any mapping between sources, and the
proposed algorithm is constrained for the case of optimising
similarity for the purposes of ranking.

In addition, recently, research in combining context with
content data has started being explored. The work of Wang
et al. [10] studies the problem of combining tags and audio
contents for artistic style clustering by proposing a language
model that makes use of both data sources. In contrast to our
work, Wang et al. do not utilise metric learning.

Researchers in [11, 12, 13] make use of mainly content-
based audio analysis, among other methods, for the purposes
of tagging a musical datum, also known as auto-tagging.
These works are tackling partially the problem we focus in our
study, since they could perform tag prediction for songs with-
out an adequate number of tags. We consider these approaches
complementary to our proposed method, since our objective is
not to predict tags for songs, but to map songs effectively from
the audio feature space to the tag feature space for the purpose
of computing more accurately their similarity.

3. PROBLEM DEFINITION: MAPPING FROM
AUDIO FEATURE SPACE TO TAG FEATURE SPACE

3.1. Similarity based on Audio Features

The audio feature space usually comprises of features ex-
tracted from audio waveforms. We follow the commonly used
assumption that a collection of songs is represented within
the audio feature space in a matrix form, where each col-
umn represents a song and rows are the features extracted, i.e.,
each song is represented as a column vector. Accordingly, let
X = (x1, x2, . . . , xn) denote a collection of n input songs,
each xi being a column vector of m dimensions containing
the extracted audio features and thus X be a matrix of size
m× n.

Based on the matrix representation of the audio feature
space, similarity between songs can be defined in several



ways, e.g., using common measures like the Euclidean dis-
tance or cosine similarity. Our empirical investigations did not
indicate significant differences between such common mea-
sures, partially due to their close relationship [14]. Therefore,
in the sequel we use Equation 1 to define a kernel matrix SA of
all pair-wise similarities within the audio feature space, which
computes the inner-product between each pair of songs.

SA = XTX (1)

Using a matrix representation of items (songs in our case)
in a feature space, and a similarity measure that is defined in
this space (such as Equation 1), constitutes a fundamental ap-
proach in Information Retrieval and is also being commonly
applied in MIR [7, 15]. It should be noted however, that such
an approach does not generalise directly to similarity measures
that are based on bag-of-frames representations and MFCCs.
Based on our empirical investigations and on analogous results
reported in the past [2, 8], a wide range of pure audio-based
similarity measures (including bag-of-frame approaches) are
in cases outperformed by similarity measures that are based on
contextual information in the form of social tags. For this rea-
son, and to simplify the presentation, we henceforth focus on
the aforementioned matrix representation in the audio feature
space and address the extension to bag-of-frames approaches
as the main topic of our future work.

3.2. Similarity based on Tag Features

Following the matrix representation in the case of audio fea-
ture space, provisions need be made for the contextual in-
formation, that is, the tags assigned to each song. We ini-
tially consider the total number of tags, C, assigned to n
given songs. We define a matrix, Y , where each row corre-
sponds to a distinct tag and each column to a song. Accord-
ingly, let Y = (y1, y2, . . . , yn) denote tag vectors that rep-
resent the tags assigned to each song yi, 1 ≤ i ≤ n. Each
yi = (y1i , y

2
i , . . . , y

C
i ) is a vector with C elements.

Based on the representation of contextual information (in
the form of social tags) with the Y matrix, all pairwise similar-
ities can be computed with the kernel matrix ST using Equa-
tion 2.

ST = Y TY (2)

As described also in Section 3.1, Equation 2 determines
the similarity between each pair of songs based on their inner-
product in the representation with the Y matrix. Although sev-
eral other measures could be used, such as the cosine similar-
ity, our empirical investigation did not indicate significant dif-
ferences compared to the use of Equation 2. Thus, using Equa-
tions 1 and Equation 2 we have an analogous way to compute
the similarity in the two different feature spaces, a fact that
helps in the following to present the problem definition and its
solution in a concise way.

Regarding the preprocessing of the contextual information,
since tags are free-form text assigned by users, we have em-

ployed Latent Semantic Analysis (LSA) [16], in order to alle-
viate the problem of finding relevant musical data from search
tags [2]. The fundamental difficulty arises when tags are com-
pared to find relevant songs, as the task eventually requires
the comparisons of the meanings or concepts behind the tags.
LSA attempts to solve this problem by mapping both tags
and songs into a “concept” space and doing the comparison
in this space. For this purpose, we used Singular Value De-
composition (SVD) in order to produce a reduced dimensional
representation of term-document matrix that emphasises the
strongest relationships and reduces noise.

3.3. Problem Definition

Since computing similarity in the tag feature space is widely
considered as advantageous compared to basing similarity
solely on audio-features, in this study we address the follow-
ing problem:

Problem Definition. We are provided with a collection
of n songs for which we have their representations both in
the audio feature space and in the tag feature space (i.e., we
assume adequate contextual information for all n songs). For
a given new song, we want to assess its similarity to the songs
in the collection. We focus on the “cold-start” case and assume
that not adequate contextual information, in the form of social
tags, is available for the new song. Thus, we cannot compute
its similarity to other songs within the tag feature space using
directly the kernel of Equation 2. However, for the new song,
we can determine the vector x that represents this new song
within the audio feature space. Moreover, we can define a
matrix, M , that maps vector x to Mx. The entries of M can be
learned from the collection of n songs. In particular, following
Equation 1, we define a derived kernel, SD, which computes
similarity after mapping all n songs from the audio feature
space as follows:

SD = (MX)T (MX) = XTM2X = XTAX, (3)

where we denote M = A1/2. The learning task is defined in
terms of minimising the distance between the kernel matrices
SD (Equation 3) and ST (Equation 2). We measure the dis-
tance between the two kernel matrices based on the relative
entropy d(SD||ST ) [17].

4. A2T: PERFORMING THE MAPPING FROM
AUDIO FEATURE SPACE TO TAG FEATURE SPACE

As described in Section 3.3, our objective is to learn a map-
ping matrix, M , in order to minimise the distance d(SD||ST )
between the derived kernel (Equation 5) and the kernel of the
context domain (Equation 2). Tsuda et al. [18] describe the
computation of a distance between two positive definite matri-
ces, based on the relative entropy. To use this result, and avoid
the problem that ST is singular1, we use a common “smooth-

1Singularity of ST results from the fact that, usually, C < n.



ing” technique to modify Equation 2 and compute based on
Equation 4 a smoothed kernel, Ss

T , for the context domain:
Ss
T = Y TY + λIn, (4)

where In is the identity matrix and n is the number of songs in
the collection. The smoothing parameter λ > 0 allows a con-
trolled alteration of Equation 2 in order to balance the trade-off
between modifying the computed similarities in the tag feature
space and avoiding singularity of ST . Based on our empirical
experience 10−2 ≤ λ ≤ 10−1 values are effective enough in
order to avoid singularity and apply minimum data alteration.
This characteristic of the λ parameter will be examined exper-
imentally in Section 5.2.

Next, we can apply the result of Tsuda et al. [18] for SD

and Ss
T , as follows:

d(SD||Ss
T ) =

1

2

(
tr((Ss

T )
−1SD) + log |Ss

T | − log |SD| − n
)
,

(5)
where tr and | · | denote the trace and the determinant of a
matrix, respectively.

Since SD = XTAX , we can cast the problem of com-
puting the optimal A∗ (please recall that M = A1/2) as a
minimisation problem in the following way:

A∗ = argmin
A≽0

d(SD||Ss
T ) (6)

The solution A∗ is computed by setting the derivative of
d(SD||Ss

T ) (Equation 5) w.r.t. A equal to 0 and solving for A.
Accordingly, we have:

A∗ =
(
X(Ss

T )
−1XT

)−1
(7)

Having computed A∗, for a new song that is represented
with vector x in the audio feature space, we can compute its
similarity to all other songs in the collection based on the de-
rived kernel SD = XTA∗X . This way, SD performs an effec-
tive mapping of all songs (including x) from the audio feature
space (representation with matrix X) to the tag feature space
(representation with matrix Y ).

5. PERFORMANCE EVALUATION
5.1. Experimental Setup

For the purposes of performance evaluation of the proposed
method we accumulated the data from iTunes and Last.fm web
services.

Audio: Content data were harvested from iTunes using
the iTunes API. Track selection was based on the cumulative
highest popularity tags offered for the track in Last.fm by se-
lecting the fifty top rank tracks for each top rank tag. The data
gathered contain 5, 459 discrete tracks and each track is a 30
second clip of the original audio, an audio length commonly
considered in related research [10].

Social tags: For each track accumulated, the most popu-
lar tags assigned to these at the Last.fm were gathered using
the Last.fm API. The data gathered contain 84, 334 discrete
tags. Each track has on average 64 discrete tags assigned to it.

Although Last.fm had a very large number of tags per track,
our selection was based on the number of times a specific tag
has been assigned to a track by different users. Thus on aver-
age the tags selected have been assigned 11 times by different
users on a track.

External metadata: For each track gathered from iTunes,
its respective metadata concerning the track’s title, playing
band, album and genre were also stored. In contrast to the
former two types of data, audio and social tags, the external
metadata where at no point used in the algorithms proposed
herein. Their usage was merely as means for evaluating the
accuracy of computed similarity. In the following we focus
on genre information, which is commonly used for evaluating
similarity measures in MIREX participations.

As far as the audio content data are concerned, the follow-
ing content features were extracted: spectral centroid, spectral
roll-off point, spectral flux, compactness, spectral variability,
root mean square, fraction of low energy windows, zero cross-
ings, strongest beat, beat sum, strength of strongest beat, thir-
teen first MFCC coefficients, ten first LPC coefficients and five
first method of moments coefficients. Extraction was achieved
using the jAudio [19] application for each entire musical datum
producing thus a single content feature point of 39 dimensions
per track.

For the social tags, each tag has been pre-processed in
order to remove stop words that offer diminished specificity
and additionally stemmed in order to reduce inflected or de-
rived words to their stem using the algorithm described by
Porter [20]. Moreover, tags were further processed using the
LSA method as already described in Section 3.2 in order to
minimise the problem of finding relevant musical data from
search tags. To this end, the SVD method has been used in or-
der to produce a reduced dimensional representation of term-
document matrix that emphasises the strongest relationships
and discards noise. Unless otherwise stated, the default value
of dimensions for the SVD method was set to 50 dimensions.

For the evaluation of the similarity measure resulting by
A2T, we use the precision resulting from the k nearest neigh-
bors (k-NN) of a query song, i.e., for each query song we mea-
sure the fraction of its k-NN that share the same genre with the
query song. In the sequel, we set as default value k = 10. For
each experiment we randomly select 80% of the data as train-
ing data, i.e., songs that act as the collection. The remaining
20% act as testing data, i.e., query songs for which no social
tagging information is assumed to exist (“cold-start” problem).
Each experiment is repeated 30 times and the results are aver-
aged.

5.2. Experimental Results

5.2.1. Tag-based vs. Audio-based

In the first experiment we examine our assumption that sim-
ilarity in the tag feature space outperforms similarity in the
audio feature space. Please notice that only for this experi-



ment, we assume that the “cold-start” problem does not exist,
i.e., that the tags of the query songs are known. For this reason,
no mapping is needed to be performed, since the similarity of
query songs to the songs in the collection is computed using
directly Equation 2. The purpose of this experiment is to ver-
ify the aforementioned assumption, which serves as the main
motivating factor for developing the proposed A2T method.
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Fig. 1. Audio-based vs. tag-based similarity.

As seen in Figure 1 the Tag-based approach compares
favorably to the Audio-based approach. This comes as no
surprise, since the contextual information provided by tags
is known to be very important for the purposes of MIR, as
already discussed in Section 1, while the audio-based ap-
proach does not utilise any information from the context do-
main solely relying on the extracted audio features. Therefore,
the motivation of A2T is to maintain the good characteristics
of the tag feature space for query songs whose tags are not
known.

5.2.2. A2T vs. Audio-based

In the next experiment, we examine the ability of A2T to learn
an effective mapping and attain improved accuracy in com-
puted similarity compared to the similarity that is based solely
on audio features. Figure 2 presents the resulting precision for
varying k number of nearest neighbors (for A2T, λ parameter
is set to 10−2). Clearly, A2T presents the best performance in
all cases. To verify the importance of the improvement result-
ing from A2T, we applied double t-tests and found the differ-
ences significant at level 0.05 for all examined k values.
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Fig. 2. Audio-based similarity vs. A2T Mapping.

Next, we aim in providing further insight as to the reasons
why A2T can attain similarity with superior accuracy. We ex-

amine the ability of the similarity measure resulting by A2T to
find k-NN songs that are close to the k-NN songs that would
be found, if we could use directly the representation of query
songs in the tag feature space (i.e., using Equation 2, result-
ing in the method called Tag-based in Section 5.2.1, which as-
sumes that such representation is possible for the query songs
and comprises an “upper bound” for the mapping procedure).
For each query song, we determined its k-NN songs based on
the similarity measure that results from A2T. Then, we mea-
sure the collective (summation) similarity of the k-NN songs
and the query song directly in the tag feature space (i.e., as-
suming the availability of the corresponding representation for
the query song and using Equation 2). The same measurement
was performed for the case where the k-NN songs of the query
song where determined using the audio-based approach. Fig-
ure 3 presents the percentage of difference in these collective
similarities between A2T and audio-based approach (for A2T
we examine 3 different cases for dimensions kept by SVD).
The superiority of the A2T is clear, since the measured collec-
tive similarity for A2T is always better (up to 100% for small
k values) compared to that of the audio-based approach. This
indicates the effective mapping that A2T manages to perform,
because the query songs have k-NN songs that are closer to
those that would have been computed by the “upper-bound”
method, which assumes full knowledge of the representation
of query songs in the tag feature space.
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Fig. 3. A2T vs. audio-based methods’ resulting k-NNs %
difference with tag-based approach’s k-NNs.

5.2.3. Sensitivity of A2T

Finally, we examined the impact of the parameters used in
A2T, namely the number of dimensions kept by the SVD algo-
rithm, as described in Section 3.2, and the smoothing param-
eter λ with respect to the precision achieved by the resulting
similarity measure. Figure 4 shows that an increase in the di-
mensions utilised in SVD has a clear augmenting impact on
the precision of the resulting similarity. Still, for larger in-
crease, the ability of SVD to emphasise the strongest relation-
ships and discard noise in data, diminishes and so does the
precision of the resulting similarity. In addition, the effect of
the smoothing parameter is quite evident. λ values between
10−2 and 10−1 are offering the best trade-off point between
data alteration and avoiding singularity, while higher values



show a decrease in precision, due to the reduced effect of the
smoothing. In the best case the effect of λ offers an increase
of approximately 5.8% in precision.
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Fig. 4. Sensitivity of A2T to: i) dimensions kept by SVD and
ii) λ.

6. CONCLUSION

In this paper, we proposed a novel approach for incorporating
characteristics of the context domain of musical data, in the
form of social tags, into the space defined by audio features,
for the purposes of addressing the “cold-start” problem, differ-
ently than auto-tagging approaches. Our proposal avoids the
sole usage audio-based similarity measures when measuring
music similarity and utilises available contextual knowledge
which is known to be quite effective in MIR.

The proposed methodology is shown to be effective in
comparison to the audio-based information method w.r.t. pre-
cision of the resulting similarity measures. This is verified
through extensive experimental results, which illustrate the
suitability of the proposed method.

In future work, we plan to examine audio similarity mea-
sures that are based on bag-of-frames approaches. For this
reason, we will focus directly on matrices that represent the
pair-wise similarity measures, i.e., not assuming representa-
tions as vectors within feature spaces.
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